Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytokine ; 176: 156536, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38325139

RESUMO

Chemokines, a family of chemotactic cytokines, mediate leukocyte migration to and entrance into inflamed tissue, contributing to the intensity of local inflammation. We performed an analysis of chemokine and immune cell responses to cardiac arrest (CA). Forty-two patients resuscitated from cardiac arrest were analyzed, and twenty-two patients who underwent coronary artery bypass grafting (CABG) surgery were enrolled. Quantitative antibody array, chemokines, and endotoxin quantification were performed using the patients blood. Analysis of CCL23 production in neutrophils obtained from CA patients and injected into immunodeficient mice after CA and cardiopulmonary resuscitation (CPR) were done using flow cytometry. The levels of CCL2, CCL4, and CCL23 are increased in CA patients. Temporal dynamics were different for each chemokine, with early increases in CCL2 and CCL4, followed by a delayed elevation in CCL23 at forty-eight hours after CA. A high level of CCL23 was associated with an increased number of neutrophils, neuron-specific enolase (NSE), worse cerebral performance category (CPC) score, and higher mortality. To investigate the role of neutrophil activation locally in injured brain tissue, we used a mouse model of CA/CPR. CCL23 production was increased in human neutrophils that infiltrated mouse brains compared to those in the peripheral circulation. It is known that an early intense inflammatory response (within hours) is associated with poor outcomes after CA. Our data indicate that late activation of neutrophils in brain tissue may also promote ongoing injury via the production of CCL23 and impair recovery after cardiac arrest.


Assuntos
Parada Cardíaca , Humanos , Camundongos , Animais , Parada Cardíaca/complicações , Quimiocinas , Quimiocinas CC
2.
Int J Immunopathol Pharmacol ; 37: 3946320231185703, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37364162

RESUMO

OBJECTIVE: SARS-CoV-2 infection has been shown to result in increased circulating levels of adenosine triphosphate and adenosine diphosphate and decreased levels of adenosine, which has important anti-inflammatory activity. The goal of this pilot project was to assess the levels of soluble CD73 and soluble Adenosine Deaminase (ADA) in hospitalized patients with COVID-19 and determine if levels of these molecules are associated with disease severity. METHODS: Plasma from 28 PCR-confirmed hospitalized COVID-19 patients who had varied disease severity based on WHO classification (6 mild/moderate, 10 severe, 12 critical) had concentrations of both soluble CD73 and ADA determined by ELISA. These concentrations were compared to healthy control plasma that is commercially available and was biobanked prior to the start of the pandemic. Additionally, outcomes such as WHO ordinal scale for disease severity, ICU admission, needed for invasive ventilation, hospital length of stay, and development of thrombosis during admission were used as markers of disease severity. RESULTS: Our results show that both CD73 and ADA are decreased during SARS-CoV-2 infection. The level of circulating CD73 is directly correlated to the severity of the disease defined by the need for ICU admission, invasive ventilation, and hospital length of stay. Low level of CD73 is also associated with clinical thrombosis, a severe complication of SARS-CoV-2 infection. CONCLUSION: Our study indicates that adenosine metabolism is down-regulated in patients with COVID-19 and associated with severe infection. Further large-scale studies are warranted to investigate the role of the adenosinergic anti-inflammatory CD73/ADA axis in protection against COVID-19.


Assuntos
COVID-19 , Humanos , Adenosina Desaminase/metabolismo , SARS-CoV-2 , Projetos Piloto , Adenosina/metabolismo , Gravidade do Paciente
3.
Transl Med Commun ; 8(1): 12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37096233

RESUMO

Background: Cumulative research show association of neutrophils and neutrophil extracellular traps (NETs) with poor outcomes in severe COVID-19. However, to date, there is no curative intent therapy able to block neutrophil/NETs-mediated progression of multi-organ dysfunction. Because of emerging neutrophil heterogeneity, the study of subsets of circulating NET-forming neutrophils [NET + Ns] as mediators of multi-organ failure progression among patients with COVID-19 is critical to identification of therapeutic targets. Methods: We conducted a prospective observational study of circulating levels of CD11b + [NET + N] immunotyped for dual endothelin-1/signal peptide receptor (DEspR ±) expression by quantitative immunofluorescence-cytology and causal mediation analysis. In 36 consented adults hospitalized with mod-severe COVID-19, May to September 2020, we measured acute multi-organ failure via SOFA-scores and respiratory failure via SaO2/FiO2 (SF)-ratio at time points t1 (average 5.5 days from ICU/hospital admission) and t2 (the day before ICU-discharge or death), and ICU-free days at day28 (ICUFD). Circulating absolute neutrophil counts (ANC) and [NET + N] subset-specific counts were measured at t1. Spearman correlation and causal mediation analyses were conducted. Results: Spearman correlation analyses showed correlations of t1-SOFA with t2-SOFA (rho r S = 0.80) and ICUFD (r S = -0.76); circulating DEspR + [NET + Ns] with t1-SOFA (r S = 0.71), t2-SOFA (r S = 0.62), and ICUFD (r S = -0.63), and ANC with t1-SOFA (r S = 0.71), and t2-SOFA (r S = 0.61).Causal mediation analysis identified DEspR + [NET + Ns] as mediator of 44.1% [95% CI:16.5,110.6] of the causal path between t1-SOFA (exposure) and t2-SOFA (outcome), with 46.9% [15.8,124.6] eliminated when DEspR + [NET + Ns] were theoretically reduced to zero. Concordantly, DEspR + [NET + Ns] mediated 47.1% [22.0,72.3%] of the t1-SOFA to ICUFD causal path, with 51.1% [22.8,80.4%] eliminated if DEspR + [NET + Ns] were reduced to zero. In patients with t1-SOFA > 1, the indirect effect of a hypothetical treatment eliminating DEspR + [NET + Ns] projected a reduction of t2-SOFA by 0.98 [0.29,2.06] points and ICUFD by 3.0 [0.85,7.09] days. In contrast, there was no significant mediation of SF-ratio through DEspR + [NET + Ns], and no significant mediation of SOFA-score through ANC. Conclusions: Despite equivalent correlations, DEspR + [NET + Ns], but not ANC, mediated progression of multi-organ failure in acute COVID-19, and its hypothetical reduction is projected to improve ICUFD. These translational findings warrant further studies of DEspR + [NET + Ns] as potential patient-stratifier and actionable therapeutic target for multi-organ failure in COVID-19. Supplementary Information: The online version contains supplementary material available at 10.1186/s41231-023-00143-x.

4.
Res Sq ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778407

RESUMO

Background: Cumulative research show association of neutrophils and neutrophil extracellular traps (NETs) with poor outcomes in severe COVID-19. However, to date, no curative intent therapy has been identified to block neutrophil/NETs-mediated progression of multi-organ dysfunction. Because of emerging neutrophil heterogeneity, the study of subsets of circulating neutrophil-extracellular trap (NET)-forming neutrophils [NET+Ns] as mediators of multi-organ failure progression among patients with COVID-19 is critical to identification of therapeutic targets. Methods: We conducted a prospective observational study of circulating levels of CD11b+[NET+N] immunotyped for dual endothelin-1/signal peptide receptor, (DEspR±) expression by quantitative immunofluorescence-cytology and causal mediation analysis. In 36 consented adults hospitalized with mod-severe COVID-19, May to September 2020, we measured acute multi-organ failure via SOFA-scores and respiratory failure via SaO2/FiO2 (SF)ratio at time points t1 (average 5.5 days from ICU/hospital admission) and t2 (the day before ICU-discharge or death), and ICU-free days at day28 (ICUFD). Circulating absolute neutrophil counts (ANC) and [NET+N] subset-specific counts were measured at t1. Spearman correlation and causal mediation analyses were conducted. Results: Spearman correlation analyses showed correlations of t1-SOFA with t2-SOFA ( rho r S =0.80) and ICUFD ( r S =-0.76); circulating DEspR+[NET+Ns] with t1-SOFA ( r S = 0.71), t2-SOFA ( r S =0.62), and ICUFD ( r S =-0.63), and ANC with t1-SOFA ( r S =0.71), and t2-SOFA ( r S =0.61). Causal mediation analysis identified DEspR+[NET+Ns] as mediator of 44.1% [95% CI:16.5,110.6] of the causal path between t1-SOFA (exposure) and t2-SOFA (outcome), with 46.9% [15.8,124.6] eliminated when DEspR+[NET+Ns] were theoretically reduced to zero. Concordantly, DEspR+[NET+Ns] mediated 47.1% [22.0,72.3%] of the t1-SOFA to ICUFD causal path, with 51.1% [22.8,80.4%] eliminated if DEspR+[NET+Ns] were reduced to zero. In patients with t1-SOFA >1, the indirect effect of a hypothetical treatment eliminating DEspR+[NET+Ns] projected a reduction of t2-SOFA by 0.98 [0.29,2.06] points and ICUFD by 3.0 [0.85,7.09] days. In contrast, there was no significant mediation of SF-ratio through DEspR+[NET+Ns], and no significant mediation of SOFA-score through ANC. Conclusions: Despite equivalent correlations, DEspR+[NET+Ns], but not ANC, mediated progression of multi-organ failure in acute COVID-19, and its hypothetical reduction is projected to improve ICUFD. These translational findings warrant further studies of DEspR+[NET+Ns] as potential patient-stratifier and actionable therapeutic target for multi-organ failure in COVID-19.

5.
Cytometry A ; 103(2): 153-161, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35246910

RESUMO

We evaluated the number of CD26 expressing cells in peripheral blood of patients with COVID-19 within 72 h of admission and on day 4 and day 7 after enrollment. The majority of CD26 expressing cells were presented by CD3+ CD4+ lymphocytes. A low number of CD26 expressing cells were found to be associated with critical-severity COVID-19 disease. Conversely, increasing numbers of CD26 expressing T cells over the first week of standard treatment was associated with good outcomes. Clinically, the number of circulating CD26 cells might be a marker of recovery or the therapeutic efficacy of anti-COVID-19 treatment. New therapies aimed at preserving and increasing the level of CD26 expressing T cells may prove useful in the treatment of COVID-19 disease.


Assuntos
COVID-19 , Dipeptidil Peptidase 4 , Humanos , Linfócitos
6.
Trials ; 23(1): 197, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246202

RESUMO

BACKGROUND: Pneumonia is the most common infection after out-of-hospital cardiac arrest (OHCA) occurring in up to 65% of patients who remain comatose after return of spontaneous circulation. Preventing infection after OHCA may (1) reduce exposure to broad-spectrum antibiotics, (2) prevent hemodynamic derangements due to local and systemic inflammation, and (3) prevent infection-associated morbidity and mortality. METHODS: The ceftriaxone to PRevent pneumOnia and inflammaTion aftEr Cardiac arrest (PROTECT) trial is a randomized, placebo-controlled, single-center, quadruple-blind (patient, treatment team, research team, outcome assessors), non-commercial, superiority trial to be conducted at Maine Medical Center in Portland, Maine, USA. Ceftriaxone 2 g intravenously every 12 h for 3 days will be compared with matching placebo. The primary efficacy outcome is incidence of early-onset pneumonia occurring < 4 days after mechanical ventilation initiation. Concurrently, T cell-mediated inflammation bacterial resistomes will be examined. Safety outcomes include incidence of type-one immediate-type hypersensitivity reactions, gallbladder injury, and Clostridioides difficile-associated diarrhea. The trial will enroll 120 subjects over approximately 3 to 4 years. DISCUSSION: The PROTECT trial is novel in its (1) inclusion of OHCA survivors regardless of initial heart rhythm, (2) use of a low-risk antibiotic available in the USA that has not previously been tested after OHCA, (3) inclusion of anti-inflammatory effects of ceftriaxone as a novel mechanism for improved clinical outcomes, and (4) complete metagenomic assessment of bacterial resistomes pre- and post-ceftriaxone prophylaxis. The long-term goal is to develop a definitive phase III trial powered for mortality or functional outcome. TRIAL REGISTRATION: ClinicalTrials.gov NCT04999592 . Registered on August 10, 2021.


Assuntos
Parada Cardíaca Extra-Hospitalar , Pneumonia , Ceftriaxona/efeitos adversos , Método Duplo-Cego , Humanos , Inflamação , Parada Cardíaca Extra-Hospitalar/diagnóstico , Parada Cardíaca Extra-Hospitalar/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
7.
Sci Rep ; 11(1): 22463, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789851

RESUMO

SARS-CoV-2 infection results in a spectrum of outcomes from no symptoms to widely varying degrees of illness to death. A better understanding of the immune response to SARS-CoV-2 infection and subsequent, often excessive, inflammation may inform treatment decisions and reveal opportunities for therapy. We studied immune cell subpopulations and their associations with clinical parameters in a cohort of 26 patients with COVID-19. Following informed consent, we collected blood samples from hospitalized patients with COVID-19 within 72 h of admission. Flow cytometry was used to analyze white blood cell subpopulations. Plasma levels of cytokines and chemokines were measured using ELISA. Neutrophils undergoing neutrophil extracellular traps (NET) formation were evaluated in blood smears. We examined the immunophenotype of patients with COVID-19 in comparison to that of SARS-CoV-2 negative controls. A novel subset of pro-inflammatory neutrophils expressing a high level of dual endothelin-1 and VEGF signal peptide-activated receptor (DEspR) at the cell surface was found to be associated with elevated circulating CCL23, increased NETosis, and critical-severity COVID-19 illness. The potential to target this subpopulation of neutrophils to reduce secondary tissue damage caused by SARS-CoV-2 infection warrants further investigation.


Assuntos
COVID-19/imunologia , Neutrófilos/imunologia , Pseudogenes/imunologia , Idoso , Quimiocinas/metabolismo , Estudos de Coortes , Estado Terminal , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Pseudogenes/genética , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença
8.
J Mol Cell Cardiol ; 152: 1-16, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33259856

RESUMO

BACKGROUND: Myeloid cells play an important role in a wide variety of cardiovascular disorders, including both ischemic and non-ischemic cardiomyopathies. Neuregulin-1 (NRG-1)/ErbB signaling has recently emerged as an important factor contributing to the control of inflammatory activation of myeloid cells after an ischemic injury. However, the role of ErbB signaling in myeloid cells in non-ischemic cardiomyopathy is not fully understood. This study investigated the role of ErbB3 receptors in the regulation of early adaptive response using a mouse model of transverse aortic constriction (TAC) for non-ischemic cardiomyopathy. METHODS AND RESULTS: TAC surgery was performed in groups of age- and sex-matched myeloid cell-specific ErbB3-deficient mice (ErbB3MyeKO) and control animals (ErbB3MyeWT). The number of cardiac CD45 immune cells, CD11b myeloid cells, Ly6G neutrophils, and Ly6C monocytes was determined using flow cytometric analysis. Five days after TAC, survival was dramatically reduced in male but not female ErbB3MyeKO mice or control animals. The examination of lung weight to body weight ratio suggested that acute pulmonary edema was present in ErbB3MyeKO male mice after TAC. To determine the cellular and molecular mechanisms involved in the increased mortality in ErbB3MyeKO male mice, cardiac cell populations were examined at day 3 post-TAC using flow cytometry. Myeloid cells accumulated in control but not in ErbB3MyeKO male mouse hearts. This was accompanied by increased proliferation of Sca-1 positive non-immune cells (endothelial cells and fibroblasts) in control but not ErbB3MyeKO male mice. No significant differences in intramyocardial accumulation of myeloid cells or proliferation of Sca-1 cells were found between the groups of ErbB3MyeKO and ErbB3MyeWT female mice. An antibody-based protein array analysis revealed that IGF-1 expression was significantly downregulated only in ErbB3MyeKO mice hearts compared to control animals after TAC. CONCLUSION: Our data demonstrate the crucial role of myeloid cell-specific ErbB3 signaling in the cardiac accumulation of myeloid cells, which contributes to the activation of cardiac endothelial cells and fibroblasts and development of an early adaptive response to cardiac pressure overload in male mice.


Assuntos
Adaptação Fisiológica , Cardiomegalia/prevenção & controle , Modelos Animais de Doenças , Hipertrofia Ventricular Esquerda/prevenção & controle , Células Mieloides/imunologia , Receptor ErbB-3/fisiologia , Animais , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Feminino , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Masculino , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo
9.
Life Sci ; 251: 117634, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32251632

RESUMO

Neuregulin-1ß (NRG-1) is a membrane-bound or secreted growth and differentiation factor that mediates its action by binding to ErbB receptors. Circulating levels of NRG-1 are characterized by large inter-individual variability with the range of absolute values covering two orders of magnitude, from hundreds to tens of thousands of picograms per milliliter of blood. NRG-1 signaling via ErbB receptors contributes to the cell survival and downregulation of the inflammatory response. A higher level of circulating NRG-1 may indicate increased shedding of membrane-bound NRG-1, which in turn can contribute to better protection against cardiovascular stress or injury. However, it is unknown whether circulating NRG-1 can induce activation of ErbB receptors. In the current study, we performed an analysis of circulating NRG-1 functional activity using a cell-based ELISA measuring phosphorylation of ErbB3 induced by blood plasma obtained from healthy donors. We found high levels of ErbB3 activating activity in human plasma. No correlations were found between the levels of circulating NRG-1 and plasma ErbB3 activating activity. To determine the direct effect of circulating NRG-1, we incubated plasma with neutralizing antibody, which prevented the stimulatory effect of recombinant NRG-1 on activation of ErbB3. No effect of the neutralizing antibody was found on plasma-induced phosphorylation of ErbB3. We also found that a significant portion of circulating NRG-1 is comprised of full-length NRG-1 associated with large extracellular vesicles. Our results demonstrate that circulating NRG-1 does not contribute to plasma-induced ErbB3 activating activity and emphasizes the importance of functional testing of NRG-1 proteins in biological samples.


Assuntos
Sobrevivência Celular/fisiologia , Neuregulina-1/metabolismo , Receptor ErbB-3/metabolismo , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...